

The Deep Space Network

Dr. Les Deutsch

Deputy Director, Interplanetary Network Directorate Jet Propulsion Laboratory, California Institute of Technology

DSN Antennas in Canberra, Australia

A Global Enterprise by Necessity

Deep Space Communications

Why Deep Space Communications is Hard

 $E_b/N_0 = constant / d^2$

Performance ~ 1/distance²

Relative Difficulty		
Place	Distance	Difficulty
GEO	4x10 ⁴ km	Baseline
Moon	4x10 ⁵ km	100
Mars	3x10 ⁸ km	5.6x10 ⁷
Jupiter	8x10 ⁸ km	4.0x10 ⁸
Pluto	5x10 ⁹ km	1.6x10 ¹⁰

History of Ground Antennas

1958, 26m Station

1979, 34m Station

1966, 64m Station

1988, 70m Station (converted from prior 64 antennas)

Higher Frequency is Good

$$E_b/N_0$$
 = constant * f^2

- Fist deep space missions transmitted at 960 MHz
- 2.2 GHz (S-band) became standard in 1969
- 8.4 GHz (X-band) became prevalent in the early 1970s
- 32 GHz (Ka-band) is now becoming the standard

Lowering the System Noise

 $E_b/N_0 = constant/T$

- Some of T cannot be controlled
- Focus on contributions from spacecraft and DSN
- Avoid interference
 - Our own spectrum from the ITU
- Best low noise amplifiers we can
 - Physical temperature is ~12 K

Ka-band (32 GHz) low noise amplifier

Eror Korecting Cods

An example of coding: the (7, 4) Hamming code

Place 4 information bits in the intersections of the Venn diagram

Fill in the diagram so that the circles have an even number of 1's

If a single error occurs, it can be corrected by locating the circles with an odd number of 1's and changing the bit in their intersection

Compression – Being stingy with bits

- Data compression is like texting
 - FYI JOE'L BRB 2 HELP L8R
 - Four your information, Joe will be right back to help later
 - Compression ratio = 39:24, or almost 2:1
- Images can be compressed 10:1
- Videos and hyperspectral images even more
- Even better: Use data onboard to answer questions and only send the answers!
 - Navigation where am I now?
 - Locating interesting areas in a scene
 - Onboard science

A History of Improving Communications

Navigation using the Communications Signal

There is no GPS in deep space

Measurements of radio signal are the primary observables

Ranging: measurement of the distance to the spacecraft

Doppler: measurement of the relative spacecraft motion

Delta Differenced One-Way Ranging (ΔDOR): Using multiple ground antennas to measure angle on the sky

Supplemented with on-board sensors

DSN Science

Measuring perturbations in the link

Attenuations

Spacecraft wobble

Frequency deviation

We learn things about

Rings and particles

Atmospheres

Interiors of bodies

We even use the DSN as a radar

See through atmospheres

Study terrain

Assess danger from asteroids

Challenge: Future Missions Generate More Data

Average Across Each Mission's Maximum Downlink Rate as a Function of Time (Comparison of Mission Set Scenarios)

Optical Communication in the DSN

- We will demonstrate deep space optical communications on the 2022 Psyche mission
- Uses Palomar 200" but we need an operational capability after that
- Add mirrors to 34m DSN antennas to provide an equivalent 8m spherical aperture
- Place a photon-counting optical detector at apex
- Use separate, much smaller aperture for uplink, reducing requirements on this larger system

